Course Schedule of TIGP Program Semester: Fall, 2008

Course: Advanced Physical Chemistry (I)-高等物化一 Time: 9:1 0~12:00 am, Tuesday Room: 311 IAM Required, credit: 3 Course No.: TIGP727100

0001001					
Date	lecturer	Date	lecturer		
9/16	Prof. Sheng-Hsien Lin	11/11	Prof. Michitoshi Hayashi		
9/23	Prof. Sheng-Hsien Lin	11/18	Prof. Michitoshi Hayashi		
9/30	Prof. Sheng-Hsien Lin	11/25	Prof. Michitoshi Hayashi		
10/07	Prof. Sheng-Hsien Lin	12/02	Prof. Michitoshi Hayashi		
10/14	Prof. Sheng-Hsien Lin	12/09	Prof. Michitoshi Hayashi		
10/21	Prof. Sheng-Hsien Lin	12/16	Prof. Michitoshi Hayashi		
10/28	Prof. Sheng-Hsien Lin	12/23	Prof. Michitoshi Hayashi		
11/04	Prof. Michitoshi Hayashi				

	Part 1 (Week 1-week7)		
Speaker	Prof. Sheng-Hsien Lin		
Бреакст			
	林聖賢教授		
	1. Classical Mechanics		
Class Outline	2. Schrödinger Equation		
Cluss Outline	3. Some Simple Systems		
	4. Hydrogen Atom		
	5. Approximation Methods		
	First present the methods of Newton equations of motion,		
	Lagrange's equations of motion and Hamilton equations of		
	motion and show how to employ these methods to treat		
Introduction	dynamical problems. These will then be compared with		
Introduction	quantum mechanical treatments. Particle in a box, harmonic		
	oscillator rigid rotator and hydrogen atom will be solved		
	Approximation methods like perturbation method and		
	variational method will be presented.		
	Homeworks		
Grading	Quizzes		
	Examinations		
Textbook	Lecture Notes		

	Part 2 (Week 8-week 15)				
Speaker	Prof. Michitoshi Hayashi				
Speaker					
	林倫年教授				
	 Many Electron Systems Hamiltonian Tight-binding systems Nearly free electron systems Born Oppenheimer approximation Molecular Hamiltonian Basis set approach Localized basis set Plain wave Many electron wave functions Slater determinant 				
	 Exchange correlation of two electrons The Hartree-Fock self-consistent Field Method Exchange energy 2. Ab initio Implementations of Hartree-Fock Molecular Orbital Theory 				
Class Outline	 Basis sets Hartree-Fock limit Electron Correlation Dynamical & non-dynamical correlations Configuration interaction Many-body perturbation theory Coupled cluster theory Multi-configuration Self-consistent Field Theory Density Functional Theory The Hohenberg-Kohn theorems Kohn-Sham self-consistent field theory Exchange-correlation functionals -LDA, LSDA, GGA, Post-GGA Time-dependent density functional theory Runge-Gross theorem Time-dependent Hartree-Fock Linear response theorem Random phase approximation Tamm-Dancoff approximation 				
	6. Applications				

Introduction	This course focuses on the quantitative introduction to the major concepts of many-body theory for electrons and its applications to modern quantum chemistry. To some extent, the course also aims at bridging the gap between quantum chemistry and many electrons in solid state. The course teaches many-electron theory, molecular orbitals with atomic basis sets and density functional theory. The Pauli exclusion principle and the Slater determinant will be introduced. Based on the solution of the Hartree-Fock equation, the electron-electron interaction (correlation effects) will be discussed. Configuration interaction and multi-configuration Hartree-Fock theories will also be introduced.
Grading	Homeworks Quizzes Examinations
Textbook	 Lecture Notes References 1. Essence of computational chemistry: theories and models Second Edition Christopher J. Cramer, Wiley 2. Modern Quantum Chemistry A. Szabo, N. S. Ostlund, Dover 3. Electron correlations in molecules and solids P. Fulde, Springer 4. A. Dreuw and M. Head-Gordon Chem. Rev. 2005, 105, 4009-4037 5. M.A.L. Marques and E.K.U. Gross Annu. Rev. Phys. Chem. 2004. 55:427–55 6. M. E. Casida "Time-dependent density functional response theory for molecules" in Recent Advances in Computational Chemistry Vol.1 Ed. D. P. Chong, page 155 (1995, World Scientific)